

Reference Configuration Update

Continued to Refine Fixed Bench Configuration

- Stiffened the optical bench by increasing the number of sections in the truss
- Provided short stiff section near the optics
- Light weighted the optical bench by changing its shape to pentagon from hexagon

Update Mass Estimates

- Light weighted the launch vehicle adapter interface
- Light weighted the fixed bench
- Adjusted the mass of HXT optics

Nov 15, 2001 C-X – FST–2

On-Orbit Configuration

Spacecraft Bus

Nov 15, 2001

Resource Summaries

Mass Estimate

Item	Satellite Mass (Kg)	Launch Mass (Kg)
Instrument Module	1561	3122
Wet Spacecraft Bus	901	1802
Margin		<u>1226</u> (25%)
Total Launch Mass		6150
Estimated Atlas V-551 Net		
Launch Capability C3 = -2.6		6150

Power Estimate Per Satellite

Average Satellite Power Requirement	814 Watts
End of Life Power Capability	1100 Watts

Telemetry Estimate per Satellite

S-Band Telemetry (Housekeeping Data)	2 Kbps
X-Band Telemetry (Science Data)	1.7 Mbps
Telemetry Down Link Time Approximately	1 hour/day

Instrument Module Mass Summary

<u>Description</u>	Mass (kg)
SXT Mirror with Grating	753
CCD	20
HXT (Optics and Detectors)	195
Calorimeter with ADR	33
Cryosystem	90
Fixed Optical Bench	<u>470</u>
Total Instrument Module	1561

Nov 15, 2001

Spacecraft Bus Mass Summary

<u>Description</u>	Mass (kg)
Structure	302
Mechanism	7
Power	122
Thermal	17
Propulsion Hardware	35
Attitude Control	73
C&DH	7
Communication	38
Integration Materials	120
Propellant	<u>180</u>
Spacecraft Bus Total	901

Nov 15, 2001

Advanced Cryocooler Technology Development Program (ACTDP)

- NASA HQ has initiated common Cryocooler technology development for Constellation-X, NGST, and TPF through the TPF project at JPL.
- The procurement begins in FY 2002 and ends in FY 2005. It has two phases:
 - Six months of Study phase
 - Remainder in Demonstration phase
- There will be two to three Engineering Models that will be developed through TRL-5 level.
- Constellation-X plans to fund Engineering Model in FY2005 and FY2006 to develop it through TRL-6 level.
- The procurement with participation of TPF, Constellation-X, and NGST is on fast track.
 - ACTDP Technology Announcement December 4, 2001
 - Proposals due January 18, 2002
 - Award with Letter of Intent February 28, 2002

Nov 15, 2001 C-X – FST–7

Cryosystem Trade Study

- A study to investigate various Cryosystem configurations began on June 2001.
- The detector cooling requirements for TES and NTD Calorimeters were obtained by detailed analysis.
- Ten cryoconfigurations were listed to meet the requirements.
- Three configurations were selected for further conceptual design and study.
 - Mechanical Cooler system without stored cryogens
 - Cryosystem such as XRS with only stored cryogens
 - Hybrid system with Mechanical cooler and stored cryogens
- Preliminary indications are that the Hybrid System is presently at TRL-6 and will meet Constellation-X requirements with moderate mass and size impact.